On the Ergodic Theory of Discrete Dynamical Systems
نویسنده
چکیده
In this paper we study a class of measures, called harmonic measures, that one can associate to a dynamical system consisting og a space X and a finitely generated group of transformations. If the group of transformations is infinite cyclic, then these measures are invariant. We show how the theory of classical dynamical systems with invariant measure can be extended to the case of harmonic measure. Other properties of harmonic measures are best understood in the light of the harmonic analysis on a free group.
منابع مشابه
SOME ERGODIC PROPERTIES OF HYPER MV {ALGEBRA DYNAMICAL SYSTEMS
This paper provides a review on major ergodic features of semi-independent hyper MV {algebra dynamical systems. Theorems are presentedto make contribution to calculate the entropy. Particularly, it is proved that thetotal entropy of those semi-independent hyper MV {algebra dynamical systemsthat have a generator can be calculated with respect to their generator ratherthan considering all the par...
متن کاملRELATIVE INFORMATION FUNCTIONAL OF RELATIVE DYNAMICAL SYSTEMS
In this paper by use of mathematical modeling of an observer [14,15] the notion of relative information functional for relative dynamical systemson compact metric spaces is presented. We extract the information function ofan ergodic dynamical system (X,T) from the relative information of T fromthe view point of observer χX, where X denotes the base space of the system.We also generalize the in...
متن کاملApplication of Dynamical Systems in Cancer Therapy
In this paper, we have proposed and analyzed a mathematical model for the study of interaction between tumor cells and oncolytic viruses. The model is analyzed using stability theory of differential equations.
متن کاملOn the Notion of Fuzzy Shadowing Property
This paper is concerned with the study of fuzzy dynamical systems. Let (XM ) be a fuzzy metric space in the sense of George and Veeramani. A fuzzy discrete dynamical system is given by any fuzzy continuous self-map dened on X. We introduce the various fuzzy shad- owing and fuzzy topological transitivity on a fuzzy discrete dynamical systems. Some relations between this notions have been proved.
متن کاملAn algorithmic view of pseudochaos
The controversial concept of quantum chaos – the dynamical chaos in bounded mesoscopic quantum systems – is presented as the most important and universal instance of a new generic dynamical phenomenon: pseudochaos. The latter characterizes the irregular behaviour of dynamical systems with discrete energy and/or frequency spectrum, which include classical systems with discrete phase space. The q...
متن کامل